PHYTOCHEMICAL SCREENING AND INVITRO ANTIBACTERIAL ACTIVITY OF ALLIUM SATIVUM EXTRACTS AGAINST BACTERIAL PATHOGENS

Packia Lekshmi NCJ ${ }^{\mathbf{1}}$, Viveka $\mathbf{S}^{\mathbf{2}}$, Jeeva $\mathbf{S}^{\mathbf{1}}$ and Raja Brindha $\mathbf{J}^{\mathbf{1}}$
${ }^{1}$ Department of Microbiology, Udaya College of Arts and Science, Vellamodi, Kanyakumari, Tamil Nadu 629204, India.
${ }^{2}$ Department of Biotechnology, Udaya School of Engineering, Vellamodi, Kanyakumari, Tamil Nadu 629204, India.

Abstract

Garlic (Allium sativum) is a important plant used in diet and in siddha medicines. Allium species are used in traditional medicine for centuries. The present study aimed at assessing the preliminary phytochemical analysis and antibacterial activity of garlic by disc diffusion method against ten MTCC bacterial species. Various solvent extracts of garlic inhibited the growth of bacterial species at the concentrations of $100,200,300,400$ and $500 \mu \mathrm{~g}$. All the four extracts showed maximum activity against Staphylococcus aureus. Among the solvent extracts, methanol extract of garlic showed better result in antimicrobial activity. This may be due to the extraction of all the major phytochemicals such as flavonoids, phenolics, saponin, alkaloids and tannins in methanol. The extracts showed concentration dependent antibacterial activity against bacterial cultures. The traditional use of Allium species for infectious diseases and for controlling bacterial infection appears to be justified.

Keywords:Allium sativum, Disc diffusion, Bacterial pathogens, Phytochemicals.

INTRODUCTION

Allium is a genus of perennial bulbulous plants that produce chemical compounds (mostly cysteine sulfoxide) that give them a characteristic onion or garlic flavour and aroma. Many are used as food plants, though not all members of the genus are equally flavourful. In most cases, both bulb and leaves are edible. Their taste may be strong or weak, depending on the species and on ground sulphur (usually as sulphate) content (Block E, 2010). In the rare occurrence of sulphur-free growth conditions, all Allium species will lack their usual pungency altogether.

About two dozen other Allium species are locally cultivated or collected as highly esteemed vegetables, seasonings, and/or medicinal plants (Hanelt P, 2001; Fritsch R \& Friesen N, 2002; Fritsch RM, 2007). Allium sativum is one of the best studied medicinal plants.
Corresponding Author

Packia Lekshmi NCJ

Email: packia_3779@yahoo.co.in

As mentioned, antibacterial and antiseptic properties were already described by Egyptians, Greeks and Romans. The various effects of garlic on bacteria, fungi, protozoa and viruses have been shown in vitro as well as invivo. The antibiotic activity is mainly due to allicin (Koch HP Lawson LD, 1996; Ankri S \& Mirelman D, 1999).

Garlic has also proposed to treat asthma, candidiasis, colds, diabetes, and antibacterial effect against food borne pathogens like Salmonella sp., Shigella sp. and Staphylococcus aureus (Teferi G \& Hahn HJ, 2002). Therapeutic use of garlic has been recognized as a potential medicinal value for thousands of years to different microorganisms. For example, antifungal, antiviral, antibacterial, antihelmantic, antiseptic and antiinflammatory properties of garlic are well documented. Moreover, garlic extracts exhibited activity against both gram negative (E.coli, Salmonella sp. and Citrobacter sp., Enterobacter sp., Pseudomonas sp. and Klebsiella sp.) and gram positive (S.aureus, S.pneumonia Group A Streptococcus and Bacillus anthrax) all of which are
causes of morbidity worldwide. In our study, we determined the phyto chemicals and antimicrobial activity of four different solvent extracts of garlic.

MATERIALS AND METHODS

Collection of plant materials

Allium sativum used in this study was collected from Poomparai village of Kodaikanal district and brought to the laboratory for further analysis.

Processing of plant materials

The collected A.sativum bulb was cleaned thoroughly and dried under shade. The dried bulb was blended into fine powder and stored in air tight container at room temperature.

Preparation of extracts

The organic solvents such as petroleum ether, chloroform, methanol and distilled water was used for the extracting the bioactive compounds from A.sativum bulb. The extraction was done using soxhlet apparatus. The extract dried using vacuum evaporator and stored in air tight containers.

Qualitative analysis of phytochemicals

Qualitative analysis of phytochemicals from the organic solvents was done by following Brindha et al., (Block E, 2010).

Steroids

The presence of steroids in the extracts was determined by adding 2 ml of extract with minimum quantity of chloroform, 3-4 drops of acetic anhydride and one drop of concentrated sulphuric acid. The change of colour from purple to blue or green indicates the presence of steroids.

Triterpenoids

Triterpenoid was determined by adding 2 ml of extract with a piece of tin and 2 drops of thionyl chloride. The development of purple or violet colour denotes the presence of triterpenoids.

Reducing sugar

Reducing sugar in the extract was analysed by adding 2 ml of fehlings reagent and 3 drops of water with 2 ml of extract. Red or orange colour indicates the presence of reducing sugar.

Sugars

Very small quantity of anthrone and very small drops of concentrated sulphuric acid was added with 2 ml of extract and heated. Development of green or purple colour denotes the presence of sugars.

Alkaloids

Two ml of extract was mixed with 2 N hydrochloric acid and mixed well. The aqueous layer formed was decanted and one or few drops of Mayer's reagent were added. Development of white precipitate or turbidity confirmed the presence of alkaloids.

Phenolic compounds

Intense blue colour was developed when a drop of neutral ferric chloride was added with 2 ml of extract in alcohol indicates the presence of phenolic compounds.

Catechins

Two ml of extract was mixed with Ehlrich reagent and few drops of concentrated HCl . Formation of pink colour denotes the presence of catechins.

Flavonoids

Two ml of extract was mixed with bit of magnesium and one or few drops of concentrated HCl and heated. Formation of red or orange colour confirmed the presence of flavonoids.

Saponins

Two ml of extract was added with water and shaked well. Foamy leather formation indicates the presence of saponins.

Tannins

Two ml of sample was mixed with water and lead acetate to form white precipitation confirmed the presence of tannins.

Anthroquinones

Two ml of sample was mixed with magnesium acetate. Formation of pink colour denotes the presence of anthroquinones.

Aminoacids

Two ml of sample was mixed with 1% ninhydrin in alcohol. Development of blue or violet colour indicates the presence of aminoacids.

Collection of bacterial cultures

Ten different bacterial cultures used in this study were collected from microbial type culture collection (MTCC). The cultures used were Klebsiella pneumoniae, E.coli, Streptococcus pyogenes, Pseudomonas aeruginosa, Enterobacter aerogenes, Staphylococcus aureus, Proteus vulgaris, Salmonella typhi, Bacillus typhi and Aeromonas hydrophila. The cultures were revived in nutrient agar medium and stored as slant cultures.

Determination of antimicrobial activity

The Muller Hinton agar (MHA) plates were swabbed with bacterial pathogens and well of 8 mm diameter was punched into the MHA medium and filled with $10-50 \mu \mathrm{l}(200-1000 \mu \mathrm{~g})$ of solvent extract. The plates were incubated at $37^{\circ} \mathrm{C}$ for 24 hours. After incubation period, the diameters of zone of inhibition produced by the extract with different human bacterial pathogens in different plates were measured and recorded.

RESULTS AND DISCUSSION

The preliminary phytochemical analysis of garlic revealed the presence of terpenoids, phenolics, aminoacids in petroleum ether extract, saponins, reducing sugar in chloroform extract. Phenolics, flavonoids, saponin, alkaloids, tannins and anthroquinones were found in methanol extract and terpenoids, saponin, tannins, flavonoids, alkaloids and reducing sugar were identified in water extract. Phenolics, flavonoids, saponin, alkaloid, tannins were also determined in Allium sp. by Udu-Ibiam et al., (2014), Rekha and Shruti, (2014) and Huzaifa et al., (2014) in their study.

Antimicrobial activity of garlic extracts against bacterial pathogens

The solvent extracts of garlic exhibited good antibacterial activity against all the ten MTCC cultures tested. Methanol, petroleum ether, water and chloroform extract showed maximum activity against Staphylococcus aureus and the antibacterial activity observed was $13.17 \pm 0.29 \mathrm{~mm}, \quad 17.17 \pm 0.29 \mathrm{~mm}, \quad 19.3 \pm 0.2 \mathrm{~mm}$, $21.8 \pm 0.2 \mathrm{~mm}$ and $24.2 \pm 0.2 \mathrm{~mm} ; \quad 11.83 \pm 0.29 \mathrm{~mm}$, $12.8 \pm 0.2 \mathrm{~mm}, 16 \pm 0.4 \mathrm{~mm}, 19.3 \pm 0.4 \mathrm{~mm}$ and $23.8 \pm 0.2 \mathrm{~mm}$; $11.1 \pm 0.2 \mathrm{~mm}, \quad 13.1 \pm 0.2 \mathrm{~mm}, \quad 15.3 \pm 0.2 \mathrm{~mm}, \quad 18.1 \pm 0.2 \mathrm{~mm}$ and $\quad 22.1 \pm 0.2 \mathrm{~mm}$ and $9.8 \pm 0.2 \mathrm{~mm}, 11.3 \pm 0.4 \mathrm{~mm}$, $13.5 \pm 0.4 \mathrm{~mm}, \quad 15.6 \pm 0.4 \mathrm{~mm}$ and $17 \pm 0.4 \mathrm{~mm}$ zone of inhibition respectively in $100,200,300,400$ and $500 \mu \mathrm{l}$ concentrations. The study of Daka D (2011) revealed that antibacterial activity of the fresh Allium extract showed greater effectiveness against tested organisms. He studied on the antibacterial activity of garlic on S.aureus. The dilute solutions of garlic can completely inhibit the growth of S.aureus at the concentration of more than $7.5 \mathrm{mg} / \mathrm{ml}$. According to Onyeagba and his colleagues (Onyeagba, RA et al., 2014; Brindha P et al., 1982), the crude extract of garlic did not exhibit any invitro inhibition on the growth of test organisms including Staphylococcus sp.

Methanol extract showed maximum activity against Enterobacter aerogenes in the range of $14.6 \pm 0.2 \mathrm{~mm}, \quad 16.3 \pm 0.2 \mathrm{~mm}, \quad 17.3 \pm 0.5 \mathrm{~mm}, \quad 20.5 \pm 0.5 \mathrm{~mm}$ and $22.3 \pm 0.5 \mathrm{~mm}$ zone of inhibition in $100,200,300,400$ and $500 \mu \mathrm{l}$ concentrations. Petroleum ether and water extract of garlic showed maximum of $17 \pm 0.4 \mathrm{~mm}$ and $17.3 \pm 0.2 \mathrm{~mm}$ zone of inhibition in $500 \mu \mathrm{l}$ concentrations respectively. Chloroform extract showed only
$11.3 \pm 0.2 \mathrm{~mm}$ zone against Enterobacter aerogenes in 500 μl concentrations (table 1). Among the gram negative organisms, the maximum zone was observed against S.typhi (50 mm) and minimum zone against Proteus sp. (20 mm) in Hindi NK (2012) study. The maximum inhibition zone for garlic extract was observed against Enterbacter sp . (40 mm) and minimum zone was observed against S.aureus (25 mm).

Methanol extract showed about 19.3 mm zone against Pseudomonas aeruginosa and Proteus vulgaris in $500 \mu \mathrm{l}$ concentrations. Water and petroleum ether extract showed bioactivity in the range of $12.1 \pm 0.2 \mathrm{~mm}$ to $16.3 \pm 0.2 \mathrm{~mm}$ zone in 100 to $500 \mu \mathrm{l}$ concentrations and $9.3 \pm 0.4 \mathrm{~mm}$ to $13.5 \pm 0.4 \mathrm{~mm}$ zone of inhibition in 200 to $500 \mu \mathrm{l}$ concentrations respectively. Klebsiella pneumonia showed maximum sensitivity to water extract ($14.5 \pm 0.5 \mathrm{~mm}$ zone of inhibition) and methanol extract ($14.3 \pm 0.2 \mathrm{~mm}$ zone) in $500 \mu \mathrm{l}$ concentrations.

Water and methanol extract of garlic exhibited $11.1 \pm 0.2 \mathrm{~mm}, \quad 14.3 \pm 0.2 \mathrm{~mm}, \quad 15.1 \pm 0.2 \mathrm{~mm}, \quad 15.3 \pm 0.2 \mathrm{~mm}$ and $17.1 \pm 0.2 \mathrm{~mm} ; 9.8 \pm 0.2 \mathrm{~mm}, 11.1 \pm 0.2 \mathrm{~mm}, 11.5 \pm 0.5 \mathrm{~mm}$, $13.1 \pm 0.2 \mathrm{~mm}$ and $13.3 \pm 0.5 \mathrm{~mm}$ in $100,200,300,400$ and $500 \mu \mathrm{l}$ concentrations against Streptococcus pyogenes. Streptococcus pyogenes was sensitive to petroleum ether and chloroform extracts in the range of $8.6 \pm 0.2 \mathrm{~mm}$ to $15.8 \pm 0.2 \mathrm{~mm}$ inhibition zone and $8.8 \pm 0.2 \mathrm{~mm}$ to $15 \pm 0.4 \mathrm{~mm}$ zone of inhibition in 100 to $500 \mu \mathrm{l}$ concentrations.

The wide spectrum of antibacterial activity of methanol, petroleum ether, water and chloroform extract was $10.8 \pm 0.2 \mathrm{~mm}, 14.8 \pm 0.2 \mathrm{~mm}, 15.3 \pm 0.2 \mathrm{~mm}, 16 \pm 0.5 \mathrm{~mm}$ and $17.3 \pm 0.2 \mathrm{~mm} ; 8.8 \pm 0.2 \mathrm{~mm}, 11 \pm 0.4 \mathrm{~mm}, 12.1 \pm 0.2 \mathrm{~mm}$, $15 \pm 0.4 \mathrm{~mm}$ and $16.1 \pm 0.2 \mathrm{~mm} ; 10.1 \pm 0.2 \mathrm{~mm}, 11.1 \pm 0.2 \mathrm{~mm}$, $11.3 \pm 0.2 \mathrm{~mm}, \quad 12.5 \pm 0.5 \mathrm{~mm}$ and $13.3 \pm 0.2 \mathrm{~mm}$ zone of inhibition in $100,200,300,400$ and $500 \mu \mathrm{l}$ concentrations; $9.8 \pm 0.2 \mathrm{~mm}, 10.8 \pm 0.2 \mathrm{~mm}, 11.3 \pm 0.2 \mathrm{~mm}$ and $12.1 \pm 0.2 \mathrm{~mm}$ zone in $200,300,400$ and $500 \mu \mathrm{l}$ concentrations respectively against E.coli. In Karuppiah and Rajaram, (2012) investigation, the garlic cloves extracts exhibited high degree of inhibitory activity against most of the seven tested organisms. Among the clinical pathogens, P.aeruginosa, E.coli, Bacillus sp., S.aureus and Enterobacter sp. were the least inhibited by garlic extracts. The diameter of zone of growth inhibition varied between 7 mm and 19 mm in garlic. Proteus vulgaris was found sensitive to water and chloroform extract in the range of $12.1 \pm 0.2 \mathrm{~mm}, 12.3 \pm 0.2 \mathrm{~mm}$, $13.1 \pm 0.2 \mathrm{~mm}, \quad 14.3 \pm 0.2 \mathrm{~mm}$ and $15.5 \pm 0.5 \mathrm{~mm} ; 10 \mathrm{~mm}$, $11 \mathrm{~mm}, 12 \mathrm{~mm}$ and 13 mm in $100,200,300,400$ and 500 $\mu \mathrm{l}$ concentrations respectively. Petroleum ether extract showed maximum of $14.3 \pm 0.4 \mathrm{~mm}$ zone against Proteus vulgaris in $500 \mu \mathrm{l}$ concentration.

Petroleum ether and methanol extract of garlic showed maximum antibacterial activity against Salmonella typhi in the range of $9.3 \pm 0.4 \mathrm{~mm}$ to
$16.5 \pm 0.4 \mathrm{~mm}$ and $9.1 \pm 0.2 \mathrm{~mm}$ to $16.1 \pm 0.2 \mathrm{~mm}$ zone of inhibition respectively in 100 to $500 \mu \mathrm{l}$ concentrations. Water extract showed the bioactivity in the range of $9.1 \pm 0.2 \mathrm{~mm}$ to $13.3 \pm 0.2 \mathrm{~mm}$ zone in 200 to $500 \mu 1$ concentrations and chloroform extract in the range of 9 mm to 12 mm zone in 300 to $500 \mu \mathrm{l}$ concentrations against Salmonella typhi. E.aerogenes was not susceptible to aqueous extract of garlic while S.typhi was susceptible $(22 \pm 0.4 \mathrm{~mm}, 24 \pm 0.6 \mathrm{~mm}$ and $26 \pm 0.4 \mathrm{~mm}$ in 300,400 and $500 \mu \mathrm{~g}$ concentration) in Shobana et al., (2009) study. Also they reported that alcoholic extract of A.sativum was highly effective against all the bacterial species that was taken for the study. Al-Delaimy and Ali (1970) reported that $4 \%(\mathrm{w} / \mathrm{v})$ fresh garlic extract inhibited the growth of S.aureus, E.coli and S.typhi.

Methanol extract exhibited $9.1 \pm 0.2 \mathrm{~mm}$, $10.3 \pm 0.5 \mathrm{~mm}, 10.5 \pm 0.5 \mathrm{~mm}$ and $12.3 \pm 0.2 \mathrm{~mm}$ zone in 200 , 300, 400 and $500 \mu 1$ concentrations against Bacillus subtilis. Bacillus subtilis was found sensitive to petroleum ether, chloroform and water extract in the range between $8.8 \pm 0.2 \mathrm{~mm}$ and $11.1 \pm 0.2 \mathrm{~mm}$ zone of
inhibition in 300 and $500 \mu \mathrm{l}$ concentrations; 9 mm and 11 mm zone in 200 and $500 \mu \mathrm{l}$ concentrations; $9.1 \pm 0.2 \mathrm{~mm}$ and $10.1 \pm 0.5 \mathrm{~mm}$ zone in 300 to $500 \mu \mathrm{l}$ concentrations respectively. All the four solvent extracts do not showed antibacterial activity against Bacillus subtilis in the least concentrations. Aeromonas hydrophila showed sensitivity pattern to chloroform, methanol and petroleum ether extract in the range of $14 \mathrm{~mm}, 13.3 \pm 0.2 \mathrm{~mm}$ and $13 \pm 0.2 \mathrm{~mm}$ zone of inhibition in $500 \mu \mathrm{l}$ concentrations respectively. Water extract showed only $10.5 \pm 0.5 \mathrm{~mm}$ zone of inhibition in highest concentration against Aeromonas hydrophila. The aqueous extract of garlic showed maximum activity against K.pneumoniae (8 mm), Bacillus sp. (7mm), E.coli (6 mm) and Streptococcus sp . (6 mm) and minimum antibacterial activity against S.typhi (4 mm) in Saravanan et al., study. A zone of 2 mm was recorded against Bacillus sp., E.coli, S.typhi by methanolic extract. The methanol extract exhibited a zone of 3 mm towards E.coli, K.pneumoniae (Saravanan P et al., 2010).

Table 1. Antimicrobial activity of Garlic against MTCC cultures

Clinic al Patho gens	Zone of Inhibition (mm)/Concentration of extract ($\mu \mathrm{g}$)																			
	100				200				300				400				500			
	$\begin{aligned} & \text { U } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { E1 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$						$\begin{aligned} & \dot{\#} \\ & \frac{\pi}{\pi} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { E } \\ & 000 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & \text { E1 } \\ & \text { 0. } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$$		$\begin{aligned} & \text { E1 } \\ & \text { B. } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		吾
K.pne umoni eae	0	0	$\begin{aligned} & 9 \pm 0 \\ & .5 \end{aligned}$	0	0	0	$\begin{aligned} & 10 \pm \\ & 0.5 \end{aligned}$	$\begin{aligned} & \hline 9.1 \\ & \pm 0 . \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 9 \pm \\ & 0.4 \end{aligned}$	$\begin{gathered} 8.6 \\ \pm \\ 0.2 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 12 . \\ & 8 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 11 . \\ & 1 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 11 \\ & \pm \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 9.1 \\ \pm \\ 0.2 \\ \hline \end{gathered}$	$\begin{aligned} & 13 . \\ & 3 \pm 0 \\ & .5 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 . \\ & 3 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 . \\ & 1 \pm \\ & 0.2 \end{aligned}$	$\begin{aligned} & \hline 10 . \\ & 1 \pm \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 14 . \\ & 3 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.5 \\ & \pm 0 . \\ & 5 \\ & \hline \end{aligned}$
E.coli	$\begin{gathered} \hline 8.8 \\ \pm \\ 0.2 \\ \hline \end{gathered}$	0	$\begin{gathered} 10 . \\ 8 \pm 0 \\ .2 \\ \hline \end{gathered}$	$\begin{gathered} 10 . \\ 1 \pm 0 \\ .2 \\ \hline \end{gathered}$	$\begin{gathered} 11 \pm \\ 0.4 \end{gathered}$	$\begin{gathered} 9.8 \\ \pm \\ 0.2 \\ \hline \end{gathered}$	$\begin{aligned} & 14 . \\ & 8 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 11 . \\ & 1 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 . \\ & 1 \pm \\ & 0.2 \end{aligned}$	$\begin{aligned} & 10 . \\ & 8 \pm \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 . \\ & 3 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 11 . \\ & 3 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{gathered} 15 \\ \pm \\ 0.4 \end{gathered}$	$\begin{aligned} & 11 . \\ & 3 \pm \\ & 0.2 \end{aligned}$	$\begin{aligned} & 16 \pm \\ & 0.5 \end{aligned}$	$\begin{aligned} & 12 . \\ & 5 \pm 0 \\ & .5 \\ & \hline \end{aligned}$	$\begin{aligned} & 16 . \\ & 1 \pm \\ & 0.2 \end{aligned}$	$\begin{aligned} & 12 . \\ & 1 \pm \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 . \\ & 3 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.3 \\ & \pm 0 . \\ & 2 \\ & \hline \end{aligned}$
S.pyog enes	$\begin{gathered} 8.6 \\ \pm \\ 0.2 \\ \hline \end{gathered}$	$\begin{gathered} 8.8 \\ \pm \\ 0.2 \\ \hline \end{gathered}$	$\begin{gathered} 9.8 \\ \pm 0 . \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 11 . \\ 1 \pm 0 \\ .2 \\ \hline \end{gathered}$	$\begin{aligned} & 11 . \\ & 1 \pm \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{gathered} 10 \\ \pm \\ 0.4 \\ \hline \end{gathered}$	$\begin{aligned} & 11 . \\ & 1 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 14 . \\ & 3 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 . \\ & 8 \pm \\ & 0.2 \end{aligned}$	$\begin{gathered} 12 \\ \pm \\ 0.4 \\ \hline \end{gathered}$	$\begin{aligned} & 11 . \\ & 5 \pm 0 \\ & .5 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 . \\ & 1 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 . \\ & 8 \pm \\ & 0.2 \end{aligned}$	$\begin{aligned} & 13 . \\ & 1 \pm \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 . \\ & 1 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 . \\ & 3 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 . \\ & 8 \pm \\ & 0.2 \end{aligned}$	$\begin{gathered} 15 \\ \pm \\ 0.4 \\ \hline \end{gathered}$	$\begin{aligned} & 13 . \\ & 3 \pm 0 \\ & .5 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.1 \\ & \pm 0 . \\ & 2 \\ & \hline \end{aligned}$
P.aur oginos a	0	0	$\begin{gathered} 15 . \\ 1 \pm 0 \\ .2 \\ \hline \end{gathered}$	$\begin{gathered} 12 . \\ 1 \pm 0 \\ .2 \\ \hline \end{gathered}$	$\begin{gathered} 9.3 \\ \pm \\ 0.4 \\ \hline \end{gathered}$	0	$\begin{aligned} & 17 . \\ & 1 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 . \\ & 3 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 11 . \\ & 1 \pm \\ & 0.2 \end{aligned}$	0	$\begin{aligned} & 17 . \\ & 5 \pm 0 \\ & .5 \\ & \hline \end{aligned}$	$\begin{aligned} & 14 . \\ & 1 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 . \\ & 5 \pm \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{gathered} 8.8 \\ \pm \\ 0.2 \\ \hline \end{gathered}$	$\begin{aligned} & 19 . \\ & 1 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 14 . \\ & 1 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{gathered} 13 . \\ 5 \pm \\ 0.4 \\ \hline \end{gathered}$	$\begin{gathered} 9.8 \\ \pm \\ 0.2 \\ \hline \end{gathered}$	$\begin{aligned} & 19 . \\ & 3 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.3 \\ & \pm 0 . \\ & 2 \\ & \hline \end{aligned}$
E.aero genes	$\begin{gathered} 9.6 \\ \pm \\ 0.2 \\ \hline 1 \end{gathered}$	$\begin{gathered} 8.8 \\ \pm \\ 0.2 \\ \hline \end{gathered}$	$\begin{gathered} 14 . \\ 6 \pm 0 \\ .2 \\ \hline \end{gathered}$	$\begin{gathered} 10 . \\ 8 \pm 0 \\ \hline .2 \\ \hline \end{gathered}$	$\begin{aligned} & 11 . \\ & 3 \pm \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{gathered} 8.8 \\ \pm \\ 0.2 \\ \hline \end{gathered}$	$\begin{aligned} & 16 . \\ & 3 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 . \\ & 1 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 14 . \\ & 3 \pm \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 10 . \\ & 1 \pm \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 . \\ & 3 \pm 0 \\ & .5 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 . \\ & 3 \pm 0 \\ & .5 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 . \\ & 5 \pm \\ & 0.4 \end{aligned}$	$\begin{aligned} & 10 . \\ & 3 \pm \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 . \\ & 5 \pm 0 \\ & .5 \\ & \hline \end{aligned}$	$\begin{aligned} & 16 . \\ & 5 \pm 0 \\ & .5 \\ & \hline \end{aligned}$	$\begin{gathered} 17 \\ \pm \\ 0.4 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 11 . \\ & 3 \pm \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 22 . \\ & 3 \pm 0 \\ & .5 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.3 \\ & \pm 0 . \\ & 2 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { S.aure } \\ & \text { us } \end{aligned}$	$\begin{aligned} & 11 . \\ & 8 \pm \\ & 0.2 \end{aligned}$	$\begin{gathered} 9.8 \\ \pm \\ 0.2 \\ \hline \end{gathered}$	$\begin{gathered} 13 . \\ 1 \pm 0 \\ .2 \\ \hline \end{gathered}$	$\begin{gathered} 11 . \\ 1 \pm 0 \\ .2 \end{gathered}$	$\begin{aligned} & 12 . \\ & 8 \pm \\ & 0.2 \end{aligned}$	$\begin{aligned} & 11 . \\ & 3 \pm \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 . \\ & 1 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 . \\ & 1 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{gathered} 16 \\ \pm \\ 0.4 \\ \hline \end{gathered}$	$\begin{aligned} & 13 . \\ & 5 \pm \\ & 0.4 \end{aligned}$	$\begin{aligned} & 19 . \\ & 3 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 . \\ & 3 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 19 . \\ & 3 \pm \\ & 0.4 \end{aligned}$	$\begin{aligned} & 15 . \\ & 6 \pm \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 21 . \\ & 8 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 18 . \\ & 1 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 23 . \\ & 8 \pm \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{gathered} 17 \\ \pm \\ 0.4 \end{gathered}$	$\begin{aligned} & 24 . \\ & 2 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 22.1 \\ & \pm 0 . \\ & 2 \\ & \hline \end{aligned}$
P.vulg aris	0	10	$\begin{gathered} 11 \pm \\ 0.5 \end{gathered}$	$\begin{gathered} \hline 12 . \\ 1 \pm 0 \\ .2 \\ \hline \end{gathered}$	$\begin{gathered} 8.8 \\ \pm \\ 0.2 \\ \hline \end{gathered}$	11	$\begin{aligned} & 14 . \\ & 1 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 . \\ & 3 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 11 . \\ & 8 \pm \\ & 0.2 \\ & \hline \end{aligned}$	11	$\begin{aligned} & 15 \pm \\ & 0.5 \end{aligned}$	$\begin{aligned} & 13 . \\ & 1 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{gathered} 13 \\ \pm \\ 0.4 \end{gathered}$	12	$\begin{aligned} & 16 . \\ & 1 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 14 . \\ & 3 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 14 . \\ & 3 \pm \\ & 0.4 \\ & \hline \end{aligned}$	13	$\begin{aligned} & 19 . \\ & 3 \pm 0 \\ & .5 \end{aligned}$	$\begin{aligned} & 15.5 \\ & \pm 0 . \\ & 5 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { S.typh } \\ & i \end{aligned}$	$\begin{gathered} 9.3 \\ \pm \\ 0.4 \\ \hline \end{gathered}$	0	$\begin{gathered} 9.1 \\ \pm 0 . \\ 2 \\ \hline \end{gathered}$	0	$\begin{aligned} & 11 . \\ & 1 \pm \\ & 0.2 \\ & \hline \end{aligned}$	0	$\begin{aligned} & 11 . \\ & 1 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9.1 \\ & \pm 0 . \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 . \\ & 5 \pm \\ & 0.4 \\ & \hline \end{aligned}$	9	$\begin{aligned} & 13 . \\ & 8 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 11 . \\ & 3 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 14 . \\ & 8 \pm \\ & 0.2 \end{aligned}$	11	$\begin{aligned} & 14 . \\ & 8 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 . \\ & 3 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 16 . \\ & 5 \pm \\ & 0.4 \\ & \hline \end{aligned}$	12	$\begin{aligned} & \hline 16 . \\ & 1 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.3 \\ & \pm 0 . \\ & 2 \\ & \hline \end{aligned}$
B.subt ilis	0	0	0	0	0	9	$\begin{aligned} & 9.1 \\ & \pm 0 . \\ & 2 \end{aligned}$	0	$\begin{gathered} 8.8 \\ \pm \\ 0.2 \\ \hline \end{gathered}$	10	$\begin{aligned} & 10 \\ & 3 \pm 0 \\ & .5 \end{aligned}$	$\begin{aligned} & 9.1 \\ & \pm 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 10 . \\ & 1 \pm \\ & 0.2 \\ & \hline \end{aligned}$	10	$\begin{aligned} & 10 . \\ & 5 \pm 0 \\ & .5 \end{aligned}$	$\begin{aligned} & 9.3 \\ & \pm 0 . \\ & 2 \end{aligned}$	$\begin{aligned} & 11 . \\ & 1 \pm \\ & 0.2 \end{aligned}$	11	$\begin{aligned} & 12 . \\ & 3 \pm 0 \\ & .2 \end{aligned}$	$\begin{aligned} & 10.1 \\ & \pm 0 . \\ & 2 \\ & \hline \end{aligned}$
A.hydr ophila	$\begin{gathered} 8.6 \\ \pm \\ 0.2 \\ \hline \end{gathered}$	0	$\begin{gathered} 9.8 \\ \pm 0 . \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.8 \\ \pm 0 . \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 9.1 \\ \pm \\ 0.2 \\ \hline \end{gathered}$	9	$\begin{aligned} & \hline 11 . \\ & 1 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.3 \\ & \pm 0 . \\ & 2 \end{aligned}$	$\begin{gathered} 9.6 \\ \pm \\ 0.4 \\ \hline \end{gathered}$	11	$\begin{aligned} & 12 . \\ & 1 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.3 \\ & \pm 0 . \\ & 2 \\ & \hline \end{aligned}$	$\begin{gathered} 12 \\ \pm \\ 0.4 \\ \hline \end{gathered}$	13	$\begin{aligned} & 12 . \\ & 3 \pm 0 \\ & .5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 10 . \\ & 3 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 13 \\ \pm \\ 0.2 \\ \hline \end{gathered}$	14	$\begin{aligned} & 13 . \\ & 3 \pm 0 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.5 \\ & \pm 0 . \\ & 5 \\ & \hline \end{aligned}$

CONCLUSION

The phytochemical analysis of garlic revealed that it contains most of the phytochemicals which can be used in therapeutic purposes. Also the solvent extracts of garlic inhibited all the ten bacterial cultures used. From this study, we conclude that garlic has a good antimicrobial potential towards the bacterial pathogesn, so it can be used in treatment of such bacterial infections and also it can be used as neutraceuticals.

ACKNOWLEDGEMENT

We would like to thank Mr.R.Anand for his help in collecting Allium species used in this study. We alsoexpress our gratitude to the principal and management of Udaya College of arts and science, Vellamodi (Tamilnadu, India) for their moral support to carry out this research.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

Al-Delaimy KS, Ali SH. Antimcirobial activity of vegetable extracts on the growth of pathogenic bacteria. Journal of Science, Food and Agriculture, 21, 1970, 110-112.
Ankri S, Mirelman D. Antimicrobial properties of Allicin from garlic. Microbes and Infection, 2, 1999, 125-129.
Block E. Garlic and other Allium, The lore and the Science, Cambridge, Royal society of chemistry, 2010.
Brindha P et al. Pharmacognostic studies on Merugan Kizhangu. Bulletin of Medicoethnobotanical Research, 3, 1982, 84-96.
Daka D. Antibacterial effect of garlic (Allium sativum) on Staphylococcus aureus: An invitro study. African Journal of Biotechnology, 10(4), 2011, 666-669.
Fritsch R, Friesen N. Evolution. Domestication and Taxonomy, In Rabinowitch, H.D. and Currah, L.(eds.), chapter 1, Allium crops science- Recent Advances, CABI publishing, Wallinford, Uk, 2002, 5-30.
Fritsch RM. Gurushidge M, Jedelska J, Keusgen M. More than only Nice-ornamental drumstick onions of Allium subg. melanocrommyum are also potential medicinal plants, Herbertia, 2007.
Hanelt P. Allium, In Hanelt, P. (ed.), Mansfeld's Encyclopaedia of agricultural and Horticultural crops, First English edition, Wien etc, Springer verlang, 2001, 2250-2269.
Hindi NK. In vitro antibacterial activity of aquatic garlic extract, apple vinegar and apple vinegar-garlic extract combination. American Journal of Phytomedicine and Clinical Therapeutics, 1, 2012, 42-51.
Huzaifa U et.al. Phytochemical screening of Aqueous extract of Garlic (Allium sativum) bulbs. Report and Opinion, 6(8), 2014, 1-4.
Karuppiah P, Rajaram S. Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens. Asian Pacific Journal of Tropical Biomedicine, 2012, 597-601.
Koch HP Lawson LD. Garlic. The science and Therapeutic Applicatiiion of Allium sativum L and related species, in Williams and Wilkins, Baltimore, Maryland, $2^{\text {nd }} e d ., 1996$.
Onyeagba, RA, Ugbogu OC, Okeke CU, Iroakasi O. Studies on the antimicrobial effects on garlic (Allium sativum Linn), ginger (Zingeber officinale Roscoe) and lime (Citrus aurantifolia Linn). African Journal of Biotechnology, 3(10), 2004, 552-554.
Rekha J, Shruti D. Phytochemical extraction and antimicrobial activity of some medicinal plants on different microbial strains. Journal of Medicinal Plants Studies, 2(3), 2014, 58-63.
Saravanan P, Ramya V, Sridhar H, Balamurugan V, Umamaheswari A. Antibacterial activity of Allium sativum L. on pathogenic bacterial strains. Global veterinaria, 4(5), 2010, 519-522.
Shobana S, Vidhya VG, Ramya M. Antibacterial activity of garlic varieties (Ophiscordon and sativum) on enteric pathogens. Current Research Journal of Biological Sciences, 1(3), 2009, 123-126.
Teferi G, Hahn HJ. Treatment of malaria in Ethiopia folk medicine, Trop. Doc., 32, 2002, 206-207.
Udu-Ibiam O et al. Phytochemical and Antioxidant analyses of selected edible mushrooms, ginger and garlic from Ebonyi State, Nigeria. IOSR Journal of Pharmacy and Biological Sciences, 9(3), 2014, 86-91.

